
Introduction to Version Control with GIT

Anja Gerbes

Goethe University in Frankfurt/Main
Center for Scientific Computing

March 8, 2019

Overview

What is version control?

Key Concepts

First Steps in GIT

GIT Workflow

Branching

Extras

2 / 34

What is version control?

I A system that keeps records of your changes

I Allows for collaborative development

I Able to see who made changes and when

I Can revert any changes back to a previous state

3 / 34

Snapshots

I The way git keeps track of your code history

I Essentially records what all your files look like at a given point
in time

I You decide when to take a snapshot and of what files

I Have the ability to go back to visit any snapshot

4 / 34

Commits

I The act of creating a snapshot

I Essentially, a project is made up of a bunch of commits
I Commits contain three pieces of information:

1. Information about how the files changed from previously
2. A reference to the commit that come before it (called the

parent commit)
3. A hash code name (Will look like:

edfec504eb864dc557f3f5b9d3d301617036d15f3a)

Commits as small as possible or as big as necessary

5 / 34

Repositories

I A collection of all the files and the history of those files
I consists of all your commits
I place where all your hard work is stored

6 / 34

install git

Setup

Linux (Ubuntu) sudo apt-get install git

Linux (Fedora) sudo yum install git

Mac https://git-scm.com/download/mac

Windows https://gitforwindows.org/

Get Help

git --help

man git

7 / 34

https://git-scm.com/download/mac
https://gitforwindows.org/

git config
configure GIT

$ git config --global user.name "Anja Gerbes"

$ git config --global user.email

"gerbes@csc.uni -frankfurt.de"

~/. gitconfig

[user]

name = Anja Gerbes

email = gerbes@csc.uni -frankfurt.de

$ git config color.ui true

$ git config format.pretty oneline

8 / 34

create repositories
$ mkdir myrepo

$ cd myrepo

I directory will be become the working tree for the repository

$ git init

Initialized empty Git repository in ../ myrepo /.git

I repository is created without a working tree and it is used as a
remote repository that is sharing a repository among
teammates

$ git init --bare

I permanently fixing permissions on a shared git repository

$ git init --bare --shared=group

For shared repositories pay attention to the file permissions.
It is recommended to prohibit changing the history.

9 / 34

create a file

$ echo "Hello World" > doc.md

10 / 34

git status
display changed or deleted files

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file >..." to unstage)

#

new file: doc.md

#

Changes not staged for commit:

(use "git add <file >..." to update what will be

committed)

(use "git checkout -- <file >..." to discard

changes in working directory)

#

modified: doc.md

11 / 34

git add
add files to the staging area

$ git add doc.md

$ git add *.md

create as small as possible, logically separated commits

$ git add --patch or git add -p

$ git add --interactive or git add -i

stage all changes (incl. deleted files)

$ git add --all

12 / 34

git commit
put files from staging area into repository and make a snapshot

a commit should contain a single, self contained idea

$ git commit -m "My first commit"

[master 8345967] changed

1 files changed , 1 insertions (+), 1 deletions (-)

automatically stage files that have been modified

$ git commit -a -m "My first commit"

[master 8345967] changed

1 files changed , 1 insertions (+), 1 deletions (-)

edit last commit-message

$ git commit --amend

13 / 34

git clone
clone remote repository

$ git clone git@host :/path/to/repository/testing.git

mydir

Cloning into ’mydir ’

remote: Counting objects: 3, done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (3/3), done.

14 / 34

git push
push all commits to remote repository

$ git push origin master

Counting objects: 5, done.

Writing objects: 100% (3/3) , 272 bytes , done.

Total 3 (delta 0), reused 0 (delta 0)

To git@host :/path/to/repository/testing.git

edfec50 ..2 fc284e master --> master

$ git push [remote -name] [remote -branch -name]

15 / 34

git pull
pull all changes from repository

$ git pull

remote: Counting objects: 7, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 4 (delta 2), reused 0 (delta 0)

Updating 361303d.. f2cd831

Fast forward

doc.md | 1 +

1 files changed , 1 insertions (+), 0 deletions (-)

16 / 34

git remote
manage set of tracked repositories

$ git remote add origin <server >

$ git remote add origin git@host :/path/to/repository/

testing.git

$ git push origin master

Counting objects: 3, done.

Writing objects: 100% (3/3) , 231 bytes , done.

Total 3 (delta 0), reused 0 (delta 0)

To git@host :/path/to/repository/testing.git

[new branch] master --> master

17 / 34

Branching

create branch my-feature

$ git branch my-feature

rename branch my-oldfeature to my-newfeature

$ git branch -m my-oldfeature my-newfeature

delete branch my-feature

$ git branch -d my-feature

create & switch to new branch

$ git checkout -b my-feature

$ git checkout master

Switched to branch ’my-feature ’

$ echo "My Branch is different" > doc.md

$ git commit -a -m "changed content to my branch"

18 / 34

List Branches

list all local branches

$ git branch

master

* my-feature

list all branches (local + remote)

$ git branch -a

master

* my-feature

remotes/origin/HEAD -> origin/master

remotes/origin/master

19 / 34

Branch Workflow

Master

Develop

v0.1 v0.2 v1.0

Developer creates an empty develop
branch locally & pushes in to server

git branch develop

git push -u origin develop

Other developers should now clone central repository & create a
tracking branch for develop branch:

git clonessh :// user@host/path/to/repo.git

git checkout -b develop origin/develop

Now everyone has a local copy of historical branches set up.

20 / 34

Branch Workflow

eg. 2 developers: Both require separate branches that are based on
develop branch instead of master branch

git checkout -b some -feature develop

Both of them add commits to the feature branches according to
the usual procedure: Edit, stage, commit.

git status

git add

git commit

21 / 34

Branch Workflow

I after several commits, a developer feels that feature is ready

I he can merge it into his local develop branch & push it into
central repository as follows:

git pull origin develop

git checkout develop

git merge some -feature

git push

git branch -d some -feature

The first command ensures that the develop branch is up to date
before attempting to merge the feature into it.

22 / 34

Feature Branch Workflow

Master

Develop

Feature

Feature

v0.1 v0.2 v1.0

I each new feature should be developed in its own branch

I branch can be pushed into central repository for backup and
collaboration purposes

I develop branch is used as a source and branches are created
here not on the master branch

I once new features are completed they are merged back into
the develop branch

I new features never interact directly with master branch

23 / 34

Release Branch Workflow

Master

Release

Develop

Feature

Feature

v0.1 v0.2 v1.0

I If develop branch contains enough features for a release,
develop branch suspends a release branch

I this starts next release cycle; new features should not be
added, only bugfixes & similar release-oriented changes

I release is ready for delivery, it is merged into master branch &
tagged with a version number

24 / 34

Release Branch Workflow

Master

Release

Develop

Feature

Feature

v0.1 v0.2 v1.0

I using a dedicated release preparation branch allows one team
to fine-tune current release while other team continues to
work on features for next release

I certain stages of development can be defined very well; e.g
”Prepare this week like version 4.0” & see it in the structure
of the repository

24 / 34

Branch → Remote
store branch in remote

$ git push origin <branch >

$ git push origin my-feature

Counting objects: 6, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (6/6) , 482 bytes , done.

Total 6 (delta 0), reused 0 (delta 0)

To git@host :/path/to/repository/testing.git

* [new branch] my-feature -> my -feature

25 / 34

Update & Merge a Branch

$ git pull

$ git merge <branch >

$ git add <dateiname >

$ git diff <branch > <branch >

26 / 34

Merging Branches

the working tree is in the same state as git HEAD

$ git checkout master

Switched to branch ’master ’

$ git merge my-feature

Updating edfec50 ..2 bc1785

Fast -forward

doc.md | 2+-

1 files changed , 1 insertions (+), 0 deletions (-)

changes can be enacted at the remote server by typing

git push origin master

27 / 34

Dealing with Merge Conflicts

I Handling a git pull request with merge conflict

I When working with git, the relatively complex tasks are
issuing a pull request & then merging with conflicts

Step 1 Verify your local repository
git checkout pinc

git pull origin pinc

Ensure that the files on local
repository are in-sync with
your remote git repository

Step 2 Switch to branch
git checkout feature-1

git pull origin feature-1

Switch to the branch that you
want to merge
Ensure that you pull the latest
files from your remote server

Step 3 Try to merge
git merge pinc

Step 4 Resolve the merge conflict If
you get the message, that
there is a merge conflict & it
cannot automatically merge
the change, you can resolve
the conflict manually. Open
the file & you’ll need to fix
this.

Step 5 Check in changes
Commit the fixes to the
branch
git add file.py

git commit -m "some comment"

git push origin feature-1

Step 6 Merge the branch

28 / 34

Restore
restore deleted files

$ git checkout -- <filename >

$ git checkout -- doc.md

$ git fetch origin

$ git reset --hard origin/master

29 / 34

git stash

git stash | git stash save will actually create a git commit object with some
name and then save it in your repository
Syntax: $ git stash <command>

save "Your message" stashes with a message
save -u | save --include-untracked stashes untracked files
list view list of stashes you made at any time
apply [stash@{stash_id}] apply specific stash
pop [stash@{stash_id}] deletes stash from stack after it is applied
show shows summary of stash diffs
show -p shows full diffs
show stash@{stash_id} use stash id to get diff summary
branch <name> creates new branch

then deletes latest stash
branch <name> stash@{stash_id} useful, conflicts after you’ve applied stash

to latest version of your branch
clear deletes all stashes made in repository

impossible to revert
drop stash@{stash_id} deletes latest stashes from stack

use it with caution, difficult to revert

30 / 34

git log
display repository log

$ git log

commit edfec504eb864dc557f3f5b9d3d301617036d15f3a

Author: Anja Gerbes <gerbes@csc.uni -frankfurt.de>

Date: Thu Oct 18 14:00:20 2018 +0200

My First Commit

search in history

$ git log --pretty=short --since =2weeks

$ git log --pretty=short --author="Anja Gerbes"

--grep="comment"

31 / 34

Regular expression for git repository

git@github.com:someone/someproject.git

[user]@[server]:[project].git

Git accepts a large range of repository URL expressions:

ssh :// user@host.xz:port/path/to/repo.git/

file :/// path/to/repo.git/

(1) ’(\w+://) (.+@)*([\w\d\.]+) (:[\d]+) {0 ,1}/*(.*) ’

(2) ’file ://(.*) ’

(3) ’(.+@)*([\w\d\.]+) :(.*)’

(4) ’((git|ssh|http(s)?)|(git@[\w\.]+))(:(//) ?)

([\w\.@\:/\ -~]+) (\.git)(/)?’

look at https://www.debuggex.com

32 / 34

https://www.debuggex.com/r/H4kRw1G0YPyBFjfm

gitignore
ignore specific informations

$ cat .gitignore

e.g. LATEX-generated files:

*.aux

*.log

*.nav

*.out

*.pdf

*.snm

*.toc

*.vrb

global .gitignore

$ git config --global core.excludesfile ~/. gitignore

33 / 34

git worktree

I A worktree gives you an extra working copy of your repository
for parallel development

git worktree add ../new -worktree -dir some -existing

-branch

I ../new-worktree-dir is a clone of your repository

I it should be somewhere outside of your main repository!

I You can then proceed to use the worktree directory as usual,
checking out branches, pushing upstream, etc.

I You are finished with a worktree, just delete its directory
then run git worktree prune from main repository directory

34 / 34

	What is version control?
	Key Concepts
	First Steps in GIT
	GIT Workflow
	Branching
	Extras

