Introduction to Version Control with GIT

SO

Anja Gerbes

Goethe University in Frankfurt/Main
Center for Scientific Computing

March 8, 2019

Center for
Scientific
Computing
Frankfurt

Overview

What is version control?
Key Concepts

First Steps in GIT

GIT Workflow
Branching

Extras

2/34

What is version control?

v

A system that keeps records of your changes

v

Allows for collaborative development

v

Able to see who made changes and when

» Can revert any changes back to a previous state

3/34

Snapshots

v

The way git keeps track of your code history

v

Essentially records what all your files look like at a given point
in time

v

You decide when to take a snapshot and of what files

v

Have the ability to go back to visit any snapshot

34

Commits

» The act of creating a snapshot
» Essentially, a project is made up of a bunch of commits

» Commits contain three pieces of information:
1. Information about how the files changed from previously
2. A reference to the commit that come before it (called the
parent commit)
3. A hash code name (Will look like:
edfec504eb864dc557f3f5b9d3d301617036d15f3a)

Commits as small as possible or as big as necessary

Repositories

» A collection of all the files and the history of those files

» consists of all your commits
» place where all your hard work is stored

6 /34

install git

Setup
Linux (Ubuntu) sudo apt-get install git
Linux (Fedora) = sudo yum install git
Mac https://git-scm.com/download/mac
Windows https://gitforwindows.org/

Get Help

git --help
man git

34

https://git-scm.com/download/mac
https://gitforwindows.org/

git config
configure GIT

$ git config --global user.name "Anja Gerbes"
$ git config --global user.email
"gerbes@csc.uni-frankfurt.de"

~/.gitconfig

[user]
name = Anja Gerbes
email = gerbes@csc.uni-frankfurt.de

$ git config color.ui true
$ git config format.pretty oneline

34

create repositories
$ mkdir myrepo

$ cd myrepo

> directory will be become the working tree for the repository
$ git init
Initialized empty Git repository in ../myrepo/.git
> repository is created without a working tree and it is used as a
remote repository that is sharing a repository among

teammates
$ git init --bare
» permanently fixing permissions on a shared git repository

$ git init --bare --shared=group

For shared repositories pay attention to the file permissions.
It is recommended to prohibit changing the history.

34

create a file

$ echo "Hello World" > doc.md

10/34

git status
display changed or deleted files

$ git status

On branch master
Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: doc .md

Changes not staged for commit:
(use "git add <file>..." to update what will be
committed)
(use "git checkout -- <file>..." to discard
changes in working directory)

HOoH oH OH H H O HH R

H*

modified: doc.md

11/34

git add

add files to the staging area

$ git add doc.md
$ git add *.md

create as small as possible, logically separated commits

$ git add --patch or git add -p
$ git add --interactive or git add -i

stage all changes (incl. deleted files)

$ git add --all

12 /34

git commit

put files from staging area into repository and make a snapshot

a commit should contain a single, self contained idea

$ git commit -m "My first commit"

[master 8345967] changed
1 files changed, 1 insertions(+), 1 deletions (-)

automatically stage files that have been modified

$ git commit -a -m "My first commit"

[master 8345967] changed
1 files changed, 1 insertions(+), 1 deletions (-)

edit last commit-message

$ git commit --amend

13 /34

git clone

clone remote repository

$ git clone git@host:/path/to/repository/testing.git
mydir

Cloning into ’mydir’

remote: Counting objects: 3, done.

remote: Total 3 (delta 0), reused O (delta O0)
Receiving objects: 100% (3/3), done.

14 /34

git push

push all commits to remote repository

$ git push origin master

Counting objects: 5, done.

Writing objects: 100% (3/3), 272 bytes, done.

Total 3 (delta 0), reused 0O (delta O0)

To git@host:/path/to/repository/testing.git
edfecb0..2fc284e master --> master

$ git push [remote-name] [remote-branch-name]

15 /34

git pull

pull all changes from repository

$ git pull

remote: Counting objects: 7, done.

remote: Compressing objects: 1007% (4/4),
remote: Total 4 (delta 2), reused O (delta O0)

Updating 361303d..f2cd831
Fast forward
doc.md | 1+
1 files changed, 1 insertioms (+),

0 deletions (-)

16

34

git remote

manage set of tracked repositories

$ git remote add origin <server>

$ git remote add origin git@host:/path/to/repository/
testing.git

$ git push origin master

Counting objects: 3, done.

Writing objects: 100% (3/3), 231 bytes, done.

Total 3 (delta 0), reused 0 (delta O0)

To git@host:/path/to/repository/testing.git
[new branch] master --> master

Branching

create branch my-feature

$ git branch my-feature

rename branch my-oldfeature tO my-newfeature

$ git branch -m my-oldfeature my-newfeature

delete branch my-feature

$ git branch -d my-feature

create & switch to new branch

$ git checkout -b my-feature
$ git checkout master
Switched to branch ’my-feature’

$ echo "My Branch is different" > doc.md
$ git commit -a -m "changed content to my branch"

34

List Branches

list all local branches

$ git branch

master
* my-feature

list all branches (local + remote)

$ git branch -a

master

* my-feature
remotes/origin/HEAD -> origin/master
remotes/origin/master

19/34

Branch Workflow

v] v
[Master | O @ Q@ -
N
Develop > > _— _—
-0 Developer creates an empty develop

N

branch locally & pushes in to server

git branch develop
git push -u origin develop

Other developers should now clone central repository & create a
tracking branch for develop branch:

git clonessh://user@host/path/to/repo.git
git checkout -b develop origin/develop

Now everyone has a local copy of historical branches set up.

20 /34

Branch Workflow

\O~O

o-0

eg. 2 developers: Both require separate branches that are based on
develop branch instead of master branch

git checkout -b some-feature develop

Both of them add commits to the feature branches according to
the usual procedure: Edit, stage, commit.
git status

git add
git commit

21/34

Branch Workflow

Oo-0

> after several commits, a developer feels that feature is ready

> he can merge it into his local develop branch & push it into
central repository as follows:

git
git
git
git
git

pull origin develop
checkout develop

merge some-feature
push

branch -d some-feature

The first command ensures that the develop branch is up to date
before attempting to merge the feature into it.

Feature Branch Workflow

12
[] o o @

Develop s > > _ -

rrrrr Loo-eh
e 0-0-0-0

» each new feature should be developed in its own branch

» branch can be pushed into central repository for backup and
collaboration purposes

» develop branch is used as a source and branches are created
here not on the master branch

» once new features are completed they are merged back into
the develop branch

> new features never interact directly with master branch

23 /34

Release Branch Workflow

v v v
[Naster | O @ ’ :
Release S\ - e
e AN
Develop S - - _—
N S

rrrrr | oot
= 0-0-0-0

» If develop branch contains enough features for a release,
develop branch suspends a release branch

> this starts next release cycle; new features should not be
added, only bugfixes & similar release-oriented changes

> release is ready for delivery, it is merged into master branch &
tagged with a version number

24 /34

Release Branch Workflow

v v v
[Naster | O @ ’ :
Release SN - e
e AN
Develop S - - _—
N S

rrrrr | oot
e 0-0-0-0

> using a dedicated release preparation branch allows one team
to fine-tune current release while other team continues to
work on features for next release

> certain stages of development can be defined very well; e.g
" Prepare this week like version 4.0" & see it in the structure
of the repository

24 /34

Branch — Remote

store branch in remote

$ git push origin <branch>
$ git push origin my-feature

Counting objects: 6, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (6/6), 482 bytes, done.
Total 6 (delta 0), reused O (delta O0)
To git@host:/path/to/repository/testing.git

* [new branch] my-feature -> my-feature

25 /34

Update & Merge a Branch

©® BH B P

git
git
git
git

pull

merge <branch>

add <dateiname >

diff <branch> <branch>

26 /34

Merging Branches

the working tree is in the same state as git HEAD
$ git checkout master

Switched to branch ’master’
$ git merge my-feature

Updating edfecb50..2bc1785
Fast-forward
doc.md | 2+-
1 files changed, 1 insertiomns (+), O deletions (-)

changes can be enacted at the remote server by typing

git push origin master

27 /34

Dealing with Merge Conflicts

» Handling a git pull request with merge conflict

» When working with git, the relatively complex tasks are
issuing a pull request & then merging with conflicts

Step 1 Verify your local repository Step 4 Resolve the merge conflict If

git checkout pinc you get the message, that
there is a merge conflict & it
cannot automatically merge
the change, you can resolve
the conflict manually. Open
the file & you'll need to fix
Step 2 Switch to branch this.

git checkout feature-1

git pull origin pinc
Ensure that the files on local
repository are in-sync with
your remote git repository

Step 5 Check in changes

git pull origin feature-1 Commit the fixes to the

Switch to the branch that you bra'nch)

want to merge git add file.py

Ensure that you pull the latest git commit -m "some comment"

files from your remote server - —
git push origin feature-1
Step 3 Try to merge

git merge pinc Step 6 Merge the branch

28 /34

Restore

restore deleted files

$ git
$ git

$ git
$ git

checkout -- <filename>
checkout -- doc.md

fetch origin
reset --hard origin/master

29 /34

git stash

git stash | git stash save will actually create a git commit object with some
name and then save it in your repository

Syntax: $ git stash <command>

save "Your message" stashes with a message

save -u | save —-include-untracked stashes untracked files

list view list of stashes you made at any time

apply [stash@{stash_id}] apply specific stash

pop [stash@{stash_id}] deletes stash from stack after it is applied

show shows summary of stash diffs

show -p shows full diffs

show stash@{stash_id} use stash_id to get diff summary

branch <name> creates new branch
then deletes latest stash

branch <name> stash@{stash_id} useful, conflicts after you've applied stash
to latest version of your branch

clear deletes all stashes made in repository
impossible to revert

drop stash@{stash_id} deletes latest stashes from stack

use it with caution, difficult to revert

30/34

git log

display repository log

$ git log
commit edfec504eb864dc557£f3f5b9d3d301617036d15£f3a
Author: Anja Gerbes <gerbes@csc.uni-frankfurt.de>

Date: Thu Oct 18 14:00:20 2018 +0200

My First Commit

search in history

$ git log --pretty=short --since=2weeks
$ git log --pretty=short --author="Anja Gerbes"
--grep="comment"

31

34

Regular expression for git repository

git@github.com: someone/someproject.git
[user]@[server]: [project] .git

Git accepts a large range of repository URL expressions:

ssh://user@host.xz:port/path/to/repo.git/
file:///path/to/repo.git/

(1) > Qw+://) C+@)*([\w\d\.1+) (: [\dI+){0,1}/*(. %)~

(2) *file://(.*%)>°

(3) (C.+@)*([\w\d\.I+) : (.%)>

(4) >((gitlsshlhttp(s)?) I (git@[\w\.1+)) (:(//)7)
CO\w\.e\:/\-"T+) (\.git) (/) ?’

look at https://www.debuggex.com

32/34

https://www.debuggex.com/r/H4kRw1G0YPyBFjfm

gitignore

ignore specific informations

$ cat .gitignore

e.g. IATEX-generated files:

.aux
.log
.nav
.out
. pdf
. snm
.toc
.vrb

* X X X X X X X

global .gitignore

$ git config --global core.excludesfile ~/.gitignore

33/34

git worktree

v

A worktree gives you an extra working copy of your repository
for parallel development

git worktree add ../new-worktree-dir some-existing
-branch

../new-worktree-dir is a clone of your repository
it should be somewhere outside of your main repository!

You can then proceed to use the worktree directory as usual,
checking out branches, pushing upstream, etc.

You are finished with a worktree, just delete its directory
then run git worktree prune from main repository directory

34 /34

	What is version control?
	Key Concepts
	First Steps in GIT
	GIT Workflow
	Branching
	Extras

