UNIX Introduction

Cluster Computing in Frankfurt

Anja Gerbes

Goethe University in Frankfurt/Main Center for Scientific Computing

August 27, 2018

Motivation

Operating System UNIX Structure

► UNIX

- is an operating system specification.
- has many implementations (Linux, Mac OS X, Free BSD, etc.)
- it controls the hardware, run programs, manage resources & communicate with other computers.

► The kernel

- is the heart of the operating system.
- handles memory management, input & output requests, & program scheduling.
- interacts with hardware & most of the tasks like memory management, task scheduling & file management.
- Users communicate with the kernel through system calls with the help of shell, libraries & other applications (e.g. Graphical User Interface)
- ► The shell is a command line interpreter.

Operating System UNIX Structure

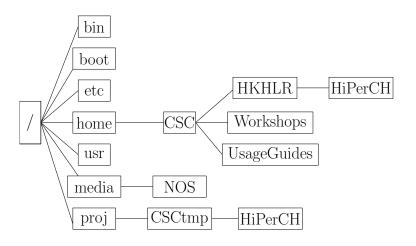
- Hardware provides basic computing resources.
 - CPU
 - RAM
 - I/O
 - PMC
- Utility Programs assists in system management & software development.
- Application Programs defines the ways in which the system resources are used to solve the computing problems of the users.
 - compilers
 - database systems
 - business programs

Operating System UNIX Structure

applications shell system calls kernel library routines

Operating System UNIX Structure

UNIX has files & processes.


processes executing program identified by a unique PID. PID - process identifier

files are a collection of data & organized into directories. everything is a file, e.g.

- modem
- keyboard
- hard-drive
- gpu

File System Basics

Directory Structure

File System Basics

Directory Structure

```
/ root directory of the file system
/boot boot mechanism for programs & configuration files
/bin system executables
/lib essential libraries
/etc system configuration files & scripts
/var files that may change often, e.g. log files
/media default mount point for removable devices
```

File System Basics

Directory Structure

contains user home directories /home

is the home directory for the root account /root

has device nodes /dev

system state and kernel options /proc contains locally installed software /opt /usr

additional programs & resources

contains temporary files, may be automatically cleared /tmp

UNIX Terminal

Terminal Usage

copy & paste in terminals

copy: Highlight the text you want, make a copy ...

paste: ... and paste at the desired location with a click of the mouse wheel (or with Shift-Insert).

filename completion

By typing part of the name of a command, filename or a directory & pressing the Tab key, the shell will complete as much as possible.

Getting Help

man

man <command> views the man pages

Documentation

- https://ubuntudanmark.dk/filer/fwunixref.pdf
- http://cheatsheetworld.com/programming/ unix-linux-cheat-sheet/
- http://www.mathcs.emory.edu/~valerie/courses/ fall10/155/resources/unix cheatsheet.html
- http://www.cyberciti.biz/tips/ linux-unix-commands-cheat-sheets.html
- http://www.tutorialspoint.com/unix/ unix-using-variables.htm
- www.ee.surrey.ac.uk/Teaching/Unix/books-uk.html
- www.tldp.org

Filename Conventions

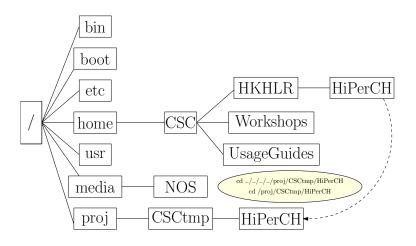
- all characters allowed but / and \0 (the null character) should be avoided in file names
- ▶ for portability the official recommendation is use only a-z A-Z 0-9 . - _

Wildcards

wildcards

```
the * wildcard list* will list all files in the current directory starting with list...

*list will list all files in the current directory ending with ...list
```


the ? wildcard the character ? will match exactly one character example for ?ist:

```
List
list
gist
.ist
```

Paths

- any file can be found following a path
- current directory
- .. parent directory
- ~ home directory of current user
- case sensitive file names
- absolute paths always start with /
- relative paths refers to the current working directory

Absolute vs. Relative Paths

Listing Files and Directory

ls

1s lists the contents of a directory

Syntax: ls <options>

```
view hidden files, with . and . .
-a
           view hidden files, without . and . .
-A
           list directories with */
-d
           list files & directories with special characters at the end
-F
           human readable units
-h
           list directory information
-1
           list directory information, but do not list owner
-q
           display one file per line
-1
```

Listing Files and Directory

15

1s lists the contents of a directory

Syntax: ls <options>

```
list files in reverse order
-r
           list subdirectories recursively
-R
           print the allocated size of each file, in blocks
-s
           sort by file size
-S
           open last edited file
-t
           list access rights for all files
-lag
-1t.r
           reverse output order
           sort files by file size
-1Srh
```

Making Directories

mkdir

mkdir <directory> creates an new directory in the current directory

Example for mkdir

```
mkdir foo/bar \rightarrow Error! mkdir -p foo/bar
```

```
Syntax: mkdir <options> <directory>
```

-p creating a whole path

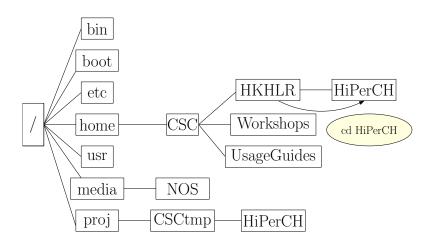
Print Working Directory & Changing to a different Directory

pwc

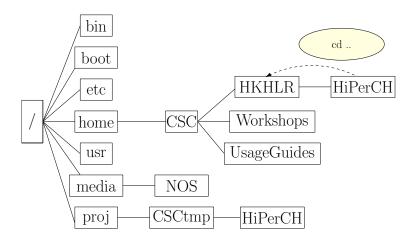
pwd displays the current directory

cd

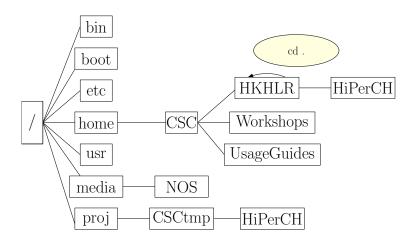
cd changes the current directory


Print Working Directory & Changing to a different Directory

Syntax: cd <path>


Example for cd & pwd cd foo pwd cd bar pwd cd pwd cd foo/bar pwd

```
Example for cd & pwd
 cd ..
 pwd
 cd.
 pwd
 cd ~
 pwd
```


Changing to a different Directory

Changing to parent Directory

Current Directory

Copying Files

ср

cp <source> <destination> copies one or more files or directories
from source to destination

```
Syntax: cp <source> <destination>
```

```
    confirm before overwriting (interactive mode)
    r | -R
    copy directories recursively
    p preserve attributes of file or directory while copying
    create hard link to a file or directory
    create soft link to a file or directory
    explain what is being done
```

Copying Files

Example for ${\tt cp}$

```
cd foo
cp ~/some_file.text bar
ls -l
ls bar
cp -p ~/some_file.text .
ls -l
cp bar baz
cp -r bar baz
ls bar baz
```

Moving Files

mv

mv <source> <destination> moves & rename files & directories

Example for mv

```
mv oldname newname
mv filename /dest/dir
```

Syntax: mv <source> <target>

- -f do not prompt before overwriting existing files
- -i prompt before overwriting each existing destination file
- -n do not overwrite any existing file
- -u update

Removing Files and Directories

rm

rm deletes files & directories

Solution

backup your data

Warning!

rm deletes **without** further inquiry! There is no such thing as the trash!

rm -rf <file/directory>
removes everything!

```
Syntax: rm <options> <file|directory>
```

- -f delete file without prompting
- -r | -R remove directories and their contents recursively
- $-\mathtt{i}$ prompt before every removal
- -p delete nested directories

Removing Directories

rmdir

rmdir <directory> deletes the directory in the current directory

Warning!

rmdir deletes only empty directories!

Syntax: rmdir <options> <directory>

-r delete directory recursively

Redirections

> symbol is used to redirect the output of a command.

```
<command> > <file>
```

< symbol is used to redirect the input of a command.

```
<command> < <file>
```

< > get input from file1 & write to file2

```
<command> < <file1> > <file2>
```

```
sort < old.txt > new.txt sorts old & saves as new.
```

>> appends the output to a file.

```
<command> >> <file>
```

- 2 > & combine stderr and stdout into the stdout stream for further manipulation
 - | pipe symbol connects the output of command1 directly to the input of command2

Redirections

Exercise

What is the difference between:

```
./a.out > outfile 2>& 1
./a.out 2>& 1 > outfile
```

Hint!

The shells process their command lines from left to right.

Displaying the Contents of a File on the Screen

echo

echo <string> prints the <string> passed to it as an argument

cat

cat <file> prints the contents of files passed to it as arguments & concatenate files together

Example for cat

cat file1.txt file2.txt > new.txt

Displaying the Contents of a File on the Screen

clear

clear clears the terminal screen

head

head <file> displays the first few lines of a file

tail

tail <file> displays the last few lines of a file

Syntax: head & tail

-n num print the first num lines

Displaying the Contents of a File on the Screen

more

more <file> open files & display contents on the screen

less

less <file> open files & display contents on the screen

Warning!

If there are only strange characters are displayed after the output of a binary, type the command reset.

Searching the Contents of a File

grep

grep 'keyword' <file> search a file for keywords

Syntax: grep

-A | -B | -C displaying lines before/after/around the match counting the number of matches -c case insensitive search - i precede each matching line with line number -nshow only the matched string -0invert match -vsearch words -wprint the number of lines without a particular words -ivc

Searching the Contents of a File

Example

```
grep Quark example.log > Quark.text
cat Quark.text
echo "These are the occurrences of Quark" >> Quark.
text
cat Quark.text
echo " in the log file" > Quark.text
cat Quark.text
```

Searching the Contents of a File

WC

wc count number of lines|words|characters in file

Syntax: wc

 $^{-\text{c}}$ | $^{-\text{m}}$ | $^{-\text{l}}$ | $^{-\text{w}}$ print the byte | character | newline | word counts $^{-\text{L}}$ print the length of the longest line

Example for wc

```
wc example.log wc -l example.log grep Quark example.
log grep Quark example.log | wc -l
```

Editing the Contents of a File

- ▶ Unix Editors are vi, emacs and nano.
- Midnight Commander mc is a directory browser/file manager for Unix-like operating systems.

There are 9 permission bits for each file divided in 3 categories.

	owner	group	other
	u	g	0
no rights			
read	r	r	r
read & write	r w -	r w -	rw-
read & execute	r - x	r - x	r - x
read, write & execute	r w x	r w x	r w x
add permission	+		
take away permission	-		
execute & access directory	Х		

Warning!

A file should only be readable, writable and executable only for yourself in most cases.

- r w x - - - -

File Access Permissions File Type

- rw - - - - - - 1 gerbes hkhlr 567 Okt 18 22:00 refsheet

```
normal filed directory
```

ı link

Others various special files

Permissions

```
- rw - - - - - - 1 gerbes hkhlr 567 Okt 18 22:00 refsheet
```

```
r read
```

w write

x execute

others various special settings

Links

- rw - - - - - - 1 gerbes hkhlr 567 Okt 18 22:00 refsheet

We will ignore links for now.

Users

- rw - - - - - - 1 **gerbes** hkhlr 567 Okt 18 22:00 refsheet

The user that owns this file.

Groups

```
- rw - - - - - - 1 gerbes hkhlr 567 Okt 18 22:00 refsheet
```

The group that owns this file.

Size

```
- rw - - - - - - 1 gerbes hkhlr 567 Okt 18 22:00 refsheet
```

The size of this file, listed in bytes.

Last Change Date

```
- rw - - - - - - 1 gerbes hkhlr 567 Okt 18 22:00 refsheet
```

The last time the file was changed.

Name

- rw - - - - - - 1 gerbes hkhlr 567 Okt 18 22:00 **refsheet**

The file name.

Changing Permissions

chmod

chmod changes a file mode. Only the owner of a file can use chmod to change the permissions of a file.

Syntax:

u+x <file>
go-w <file>
u+rw <file>
u-w <file>
a+rx <directory>
a+r <directory>/*

chmod <options>

making the <file> executable
<file> is no longer writeable
providing r & w access to a user
removing execute permissions to a user
adding r & w permissions to all directories
everybody can read the content of the
<directory>

Process Management

Syntax	Description
ps	displays information about the process status of all
	processes
top	lists running processes
bg &	moves the current process to the background
fg	moves the current process to the foreground
	typing fg with no job number foregrounds the last
	suspended process
jobs	lists background & suspended processes

Process Management

Syntax	Description
kill ctrl-C	stop the process
	it is not possible to kill of others users' processes!
kill -9	non-catchable, non-ignorable kill
ctrl-D	ending terminal line input
ctrl-Z	suspend the current process

File System Basics

Command

file <filename>
find <filename|dir>
apropos <command>
touch <filename>

whereis <filename>
which <filename>

Description

identifies the file type finds a file/directory searching for commands creates a blank file or modifies an existing files attributes shows the location of a file shows the location of a file if it is in your PATH

File System Basics

Disc Usage

du

du estimate file space usage

Syntax: du <options>

```
<file> shows how much space has the <file>
```

-h human readable units

-s show occupied space as a sum

File System Basics

File System Disk Space Usage

df

df reports the amount of available disk space being used by file systems

Syntax: df <options>

-h human readable units

System Info

Environment Variables

printenv

printenv prints the values of the specified environment

System Variable	Description
HOSTNAME	your computers name
HOME	home directory of the current user
PATH	the search path for commands
USER	the ID of the current user
PWD	the current working directory

System Info

History of Commands

history

history shows command history list

System Variable

HISTFILE
HISTFILESIZE
HISTSIZE

Description

the files name which command history is saved max number of lines contained in the history file the number of commands to remember in the command history

System Info

uname

Command Description

date to display & set system date time

reset resets the terminal screen if is not displaying correctly

print information about the current system

tar

tar is an archiving file format

Syntax: tar <options>

A appends tar files to an archive

−c creates a new archive

-d shows the differences between archive & file system

--delete deletes from the archive

-f use archive file

tar

tar is an archiving file format

```
Syntax: tar <options>

-j r or w archives using the bzip2 compressor appends files to the end of a tar archive
-t lists the contents of an archive
-u updates the tar archive
-x extracts files from a tar archive
-z r or w archives through gzip
```

Example for tar

```
tar -cf <archivename>.tar <directory>
will pack all files in a directory
tar -czf <archivename>.tar.gz <directory>
will pack & compress all files in a directory using gzip
tar -cjf <archivename>.tar.bz2 <directory>
will pack & compress all files in a directory using bzip2
tar -xfz <archivename>.tar.qz
to unpack (and uncompress) use x instead of c
```

Example for ${\tt tar}$

```
tar cvf stuff.tar example.log some_file.text Quark.
t.ext.
ls -lt.rh
tar tf stuff.tar
rm stuff.tar
tar cvzf stuff.tar.gz example.log some_file.text
Ouark.text
ls -lt.rh
tar tf stuff.tar.gz
rm example.log some_file.text Quark.text
1.s
tar xvzf stuff.tar.qz
ls
```

Secure Connections with ssh

Password Authentication

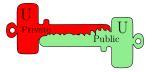
- user system is authenticated to the system using password only
- all transmitted data is encrypted
- host authentication is performed via fingerprint comparison (user responsibility)

ssh

ssh <username>@<remote-host> <command>

Syntax: ssh <options>

-f sends ssh to background

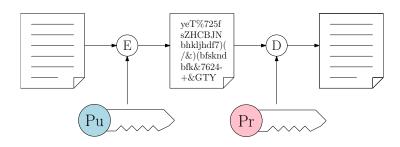

Example for ssh

ssh loewe ls

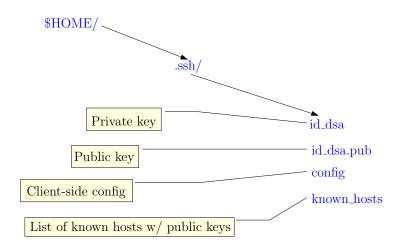
Generating Keys

ssh-keygen

ssh-keygen -1 calculates the fingerprint of a public key ssh-keygen -t dsa | ssh-keygen -t rsa generates a key pair



Authentication using Public Key


- every user owns a pair of keys, one private & one public
- public key can be known to everybody & allows to commmunicate with the user
- private key must be secret
- when the user's public key is deposited at the remote host, the user can be authenticated without a password
- only the private key fits the corresponding public key

Authentication using Public Key

- a message will be encrypted with one of the keys & can only be decrypted with the corresponding other key
- with ssh, the session key is negotiated & authentication is performed using this mechanism

User Configuration, Client Side

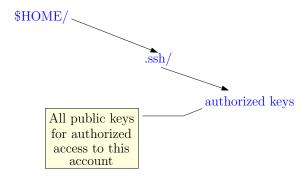
User Configuration, Client Side

Example for User Configuration

Host loewe

Hostname loewe-csc.hhlr-gu.de

Hostname other.host.name.org


User anja

Host yah

Hostname yet.another.host.org

Port 45667

User Configuration, Server Side

Data Transfer

Secure Copy

scp

scp <source> <destination> copies files over a secure, encrypted
network connection

remote source or destination:

<username>@<remote-host>:<path>

wildcards are allowed

Syntax: scp <options>

-r allows recursive copying into subfolders

Data Transfer

Remote Synchronization

rsync

rsync <source> <destination> is a tool for data transfer &
synchronization of data between remote systems

rsync uses ssh by default

Syntax:	rsync <options></options>
-a	archive mode
-е	specify the remote shell to use
$-\Delta$	increase verbosity
-z	compress file data during the transfer
stats	give some file-transfer statistics